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Quantum nonlocality test for continuous-variable states with dichotomic observables
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There have been theoretical and experimental studies on quantum nonlocality for continuous variables,
based on dichotomic observables. In particular, we are interested in two cases of dichotomic observables for
the light field of continuous variables: One case is even and odd numbers of photons and the other case is no
photon and the presence of photons. We analyze various observables to give the maximum violation of Bell’s
inequalities for continuous-variable states. We discuss an observable which gives the violation of Bell’s in-
equality for any entangled pure continuous-variable state. However, it does not have to be a maximally
entangled state to give the maximal violation of Bell’s inequality. This is attributed to a generic problem of
testing the quantum nonlocality of an infinite-dimensional state using a dichotomic observable.
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I. INTRODUCTION

The paradox suggested by Einstein, Podolsky, and Ro
aroused controversy about nonlocality of quantum states@1#.
Bell proposed a remarkable inequality imposed by a lo
hidden variable theory@2#, which enables a quantitative te
on quantum nonlocality. Numerous theoretical studies
experimental demonstrations have been performed to un
stand nonlocal properties of quantum states. Various vers
of Bell’s inequality @3,4# followed the original one@2#.

Gisin and Peres found pairs of observables whose co
lations violate Bell’s inequality for a discreteN-dimensional
entangled state@5#. Banaszek and Wo´dkiewicz ~BW! studied
Bell’s inequality for continuous-variable states, in terms
Wigner representation in phase space based upon parity
surement and displacement operation@6#. This is useful be-
cause of its experimental relevance, but does not lead
maximal violation for the original Einstein-Podolsky-Ros
~EPR! state@7#. Recently, Chenet al. studied Bell’s inequal-
ity of continuous-variable states@8# using their newly de-
fined Bell operator@8,9#. In contrast to the operators in BW
formalism, the pseudospin operators are not experimen
easy to realize, but the EPR state can maximally viol
Bell’s inequality in their framework@8#.

In this paper, we relate the ‘‘pseudospin’’ Bell operator
Chenet al. to one of Gisin and Peres for a finite-dimension
state to bridge the gap between the discussions for the
locality of finite- and infinite-dimensional~or continuous-
variable! systems. The origin of the pseudospin operato
attributed to the limiting case of Gisin-Peres observable@5#.
We investigate various versions of Clauser, Horne, Shimo
and Holt’s ~CHSH’s! inequality for continuous-variable
states. It is pointed out that the BW formalism can be g
eralized to obtain a larger Bell violation@10#, but it cannot
give the maximal violation for the EPR state even in t
generalized version. We analyze the reason why the E
state cannot maximally violate Bell’s inequality in the ge
eralized BW formalism. We compare the EPR state with
entangled state of two coherent states@11#. In contrast to the
EPR state, the entangled coherent state shows the max
1050-2947/2003/67~1!/012106~7!/$20.00 67 0121
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Bell violation for certain limit both for the generalized BW
and et al. formalism of for the Chen. We also investiga
Clauser and Horne’s~CH! version of Bell’s inequality. We
find the upper and lower bounds for the Bell-CH inequal
and test whether the values for continuous-variable st
reach these bounds.

II. ORIGIN OF PSEUDOSPIN OPERATOR

Chen et al., introduced a pseudospin operators
5(sx ,sy ,sz) for a nonlocality test of continuous variables
a direct analogy of a spin-1/2 system@8,9#,

sz5 (
n50

`

~ u2n11&^2n11u2u2n&^2nu!, ~1!

sx6sy52s6 , ~2!

a•s5szcosu1sinu~eiws21e2 iws1!, ~3!

wheres25(n50
` u2n&^2n11u5(s1)† anda is a unit vector.

The Bell-CHSH operator based upon the pseudospin op
tor is then defined as@3,8#

B5~a•s1! ^ ~b•s2!1~a•s1! ^ ~b8•s2!1~a8•s1! ^ ~b•s2!

2~a8•s1! ^ ~b8•s2!, ~4!

where 1 and 2 denote two different modes anda8, b, andb8
are unit vectors.

Bell’s inequality imposed by local hidden variable theo
is then u^B&u<2. In this formalism, the violation of the in
equality is limited by Cirel’son boundu^B&u<2A2 @8,12#. It
was found that a two-mode squeezed state

uTMSS&5 (
n50

`
~ tanhr !n

coshr
un&un&, ~5!

whereun& is a number state andr is the squeezing paramete
maximally violates Bell’s inequality, i.e.,u^B&umax→2A2
©2003 The American Physical Society06-1
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JEONGet al. PHYSICAL REVIEW A 67, 012106 ~2003!
when r becomes infinity @8#. Note that the two-mode
squeezed state~5! becomes the original EPR state whenr
→` @13#.

Gisin and Peres found pairs of observables whose co
lations violate Bell’s inequality for anN-dimensional en-
tangled state@5#

uC&5 (
n50

N21

cnufn&ucn&, ~6!

where$ufn&% and$ucn&% are any orthonormal bases. Furth
they showed that the violation of Bell’s inequality is max
mal in the case of a spin-j singlet state for anj even. The
Gisin-Peres observable is

A~u!5Gxsinu1Gzcosu1E, ~7!

whereGx andGz are block-diagonal matrices in which eac
block is an ordinary Pauli matrix,sx andsz , respectively.E
is a matrix whose only nonvanishing element isEN21,N21
51 whenN is odd andE is zero whenN is even. The Bell
operator is then defined as

BGP5~a•A1! ^ ~b•A2!1~a•A1! ^ ~b8•A2!1~a8•A1!

^ ~b•A2!2~a8•A1! ^ ~b8•A2!, ~8!

whereA represents the Gisin-Peres observableA(u). It was
Gisin @14# who showed any entangled pure state violate
Bell’s inequality. Later, Gisin and Peres@5# found the observ-
able ~7! to give the violation of Bell’s inequality for any
N-dimensional entangled pure state.

In limit N→`, we find thatGx and Gz become pseu-
dospin operatorssx and sz in Eq. ~2!, and A(u) becomes
a•s ~with w50) in Eq.~3!. Note that the effect ofE vanishes
for N→`. Understanding the observables of Chenet al.as a
limiting case of Gisin-Peres observable defined for a fin
discrete system, it is now straightforward to show that
EPR state maximally violates Bell’s inequality as the EP
state(n50

` un&un& is theinfinite-dimensional singlet state. Ex-
tending the Gisin and Peres’ argument, we can make a
mark: Any bipartite pure infinite-dimensional entangled st
violates Bell’s inequality for observables based on the ps
dospin observables.

III. THE BELL-CHSH INEQUALITIES FOR CONTINUOUS
VARIABLES

A. The two-mode squeezed state

Banaszek and Wo´dkiewicz studied Bell’s inequality for
continuous-variable systems based upon parity measure
and displacement operation@6#:

P~a!5P1~a!2P2~a!

5D~a! (
n50

`

~ u2n&^2nu2u2n11&^2n11u!D†~a!,

~9!
01210
e-

a

e
e

e-
e
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where D(a) is the displacement operatorD(a)5exp@aâ†

2a* â# for bosonic operatorsâ and â†. It should be pointed
out that in order to maximize the violation of Bell’s inequa
ity, the BW formalism needs to be generalized to write t
Bell operator as@10#

BBW5P1~a!P2~b!1P1~a8!P2~b!1P1~a!P2~b8!

2P1~a8!P2~b8!. ~10!

BW assumed two of the four parameters equal to zero aa
5b50. The Bell-CHSH inequality can then be represen
by the Wigner function as

u^BBW&u5
p2

4
uW~a,b!1W~a,b8!1W~a8,b!2W~a8,b8!u

<2, ~11!

where W(a,b) represents the Wigner function of a give
state. UsingP1(a)P1(a)5P2(a)P2(a)51, it is straight-
forward to check the Cirel’son boundu^BBW&u<2A2 in the
generalized BW formalism.

The Wigner function of the two-mode squeezed state
@15#

WTMSS~a,b!5
4

p2
exp@22 cosh 2r ~ uau21ubu2!

12 sinh 2r ~ab1a* b* !#, ~12!

with which the Bell functionBBW[^BBW& can be calculated
In the infinite squeezing limit, the absolute Bell functio
maximizes asuBBWumax→8/A8 39.2.32 at a52a85b8/2
5A(ln 3)/16 cosh 2r and b50. This shows that the EPR
state does not maximally violate Bell’s inequality in the ge
eralized BW formalism. In Fig. 1~a!, using the generalized
BW formalism, the maximized valueuBBWumax is plotted for
the two-mode squeezed state and compared with the v
tion of Bell’s inequality based on other formalisms.~The
method of steepest descent@16# is used in Fig. 1~a! and other
figures in the paper to get the maximized value of violati
within the formalism.!

The reason why the generalized BW formalism does
give the maximum violation for the EPR state can be e
plained as follows. The operatorsz in Eq. ~1! is equivalent to
BW’s observableP(a) when a50 except a trivial sign
change. The main difference is that BW use the displacem
operator while Chenet al. use the direct analogy of the ro
tation of spin operators. When the Gisin-Peres observa
A(u) ~or equivalently pseudospin observablea•s with w
50) is applied on an arbitrary state(n50

` f (n)un&, where
f (n) is an arbitrary function, we obtain
6-2
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QUANTUM NONLOCALITY TEST FOR CONTINUOUS- . . . PHYSICAL REVIEW A 67, 012106 ~2003!
A~u! (
n50

`

f ~n!un&5A2cos~u2p/4! (
n50

`

f ~2n!u2n&

1A2sin~u2p/4! (
n50

`

f ~2n11!u2n11&.

~13!

The operatorA(u) rotates( f (n)un& into even and odd parity
states; the pseudospin observable~3! can completely flip the
parity of any given state by changing the angle. Note that
only measurement applied to the nonlocality test here is
parity measurement. Different from the pseudospin opera
BW’s observableP(a) does not assure the complete par
change, which makes it impossible to find the maximal B
violation of the two-mode squeezed state. In the two-mo
squeezed state, orthogonal number states, which have
defined parity, are the entangled elements. The expecta
value of BW’s observable for a number state is obtained
@17#

P~n,uau!5^nuP~a!un&

5
e2uau2uau2n

n! (
k50

` H ~2k!!

uau4k
@L2k

(n22k)~ uau2!#2

2
~2k11!!

uau4k12
@L2k12

(n22k21)~ uau2!#2J , ~14!

whereLq
(p)(x) is an associated Laguerre polynomial. We n

merically assessP(n,uau) for some different numbers an

FIG. 1. ~a! The maximized value of an absolute Bell functio
uBumax for a two-mode squeezed state vs the squeezing paramer
in the BW ~solid line!, the generalized BW~dashed!, and the for-
malisms of Chenet al. ~dotted!. It is shown that the EPR state doe
not maximally violate Bell’s inequality in the generalized BW fo
malism.~b! The expectation valueP of BW’s observable for num-
ber states ofn51 ~solid!, n52 ~dashed!, and n53 ~dotted! is
plotted against the absolute displacement parameteruau.
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check that the parity of the number states cannot be perfe
flipped by changing the parametera of the displacement
operatorD(a) as shown in Fig. 1~b!.

B. The entangled coherent state

The entangled coherent state@11# is an another importan
continuous-variable entangled state. Many possible appl
tions to quantum information processing have been stud
utilizing entangled coherent states@18#. The entangled coher
ent stateuECS& can be defined as

uECS&5N~ ug&u2g&2u2g&ug&), ~15!

ug&5e2ugu2/2(
n50

`
gn

An!
un&, ~16!

whereN is a normalization factor andug& is a coherent state
with gÞ0. For the case of the entangled coherent state,
Bell function in the generalized BW formalism~11! can be
calculated from its Wigner function

WECS~a,b!54N 2$exp@22ua2gu222ub1gu2#

1exp@22ua1gu222ub2gu2#

2exp@22~a2g!~a* 1g!22~b1g!

3~b* 2g!24g2#2exp@22~a* 2g!~a1g!

22~b* 1g!~b2g!24g2#%, ~17!

whereg is assumed to be real for simplicity. We find that th
Bell function approaches to 2A2 for g→` @10# at a50,
b55p/16g, a85p/8g, andb853p/16g as shown in Fig.
2~a!.

The entangled coherent state can be represented in
(232)-Hilbert space as

uECS&5
1

A2
~ ue&ud&2ud&ue&), ~18!

where ue&5N1(ug&1u2g&) and ud&5N2(ug&2u2g&) are
even and odd macroscopic quantum interference states
normalization factorsN1 and N2 . Note that these state
form an orthogonal basis, regardless of the value ofg, which
span the two-dimensional Hilbert space. Suppose that
ideal rotationRx(u) around thex axis,

Rx~u!ue&5cosuue&1 i sinuud&,

Rx~u!ud&5 i sinuue&1cosuud& ~19!

can be performed on both sides of the entangled cohe
state~18!. Because, state~18! is the same as the EPR-Boh
state of a two-qubit system, it can be easily proved tha
maximally violates the Bell’s inequality, i.e., the maximize
Bell function is 2A2. Remarkably, it is known that the dis
placement operator acts like the rotationRx(u) on the even
and odd macroscopic quantum interference states
g@1 @10,19#. The fidelity can be checked tha

r

6-3
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JEONGet al. PHYSICAL REVIEW A 67, 012106 ~2003!
u^euD†( ia i)Rx(u)ue&u25u^duD†( ia i)Rx(u)ud&u2→1 for g
→`, whereu52ga i anda i is real. As a result, the parity o
the even and odd macroscopic quantum interference st
which are the orthogonal entangled elements in the entan
coherent state, can be perfectly flipped by the displacem
operator forg→` as is implied in Fig. 2~b! @10#. This prop-
erty enables the maximal Bell violation of the entangled
herent state for a large coherent amplitude.

In the pseudospin formalism, the correlation functi
E(u1 ,w1 ,u2 ,w2)5^ECSus1(u1 ,w1) ^ s2(u2 ,w2)uECS& of
the entangled coherent state is

E~u1 ,w1 ,u2 ,w2!52cosu1cosu22K~g!

3cos~w12w2!sinu1sinu2 ,

K~g!5
coshg2sinhg2

S (
n50

`
g4n11

A~2n!! ~2n11!!
D 2 , ~20!

where 0,K(g),1, and K(g) approaches 1 wheng→0
~but gÞ0) and g→`. The maximized value of the Bel
function B5^B& is obtained from Eq.~20! as

uBumax52A11K~g!2, ~21!

by setting u150, u185p/2, u252u28 , and w15w250.
Then, the maximal violation is found for the two extrem

FIG. 2. ~a! The maximized value of an absolute Bell functio
uBumax for an entangled coherent state is plotted against its cohe
amplitudeg using the BW~solid!, the generalized BW~dashed!,
and formalisms of Chenet al. ~dotted!. The entangled coherent sta
maximally violates Bell’s inequality in the generalized BW forma
ism for g→` and in the formalism of Chenet al.; both for g→0
~but gÞ0) and forg→`. ~b! The expectation valueP of BW’s
observable for the even macroscopic quantum interference sta
plotted againsta for g52 ~solid! andg55 ~dashed!. Forg@1, the
displacement operator acts like a rotation so that the parity of
even and odd macroscopic quantum interference states may be
flipped.
01210
es,
ed
nt

-

cases,g→0 andg→`. Wheng is small, the entangled co
herent state is not maximally entangled in an infini
dimensional Hilbert space as tracing the state over one m
variables the von Neumann entropy is not infinite. It is int
esting to note that the nonmaximally entangled state m
mally violates the Bell’s inequality. We attribute this mis
match to the dichotomic nature of the test of quantu
nonlocality for an infinite-dimensional system. However, t
entangled coherent state is maximally entangled in
232-Hilbert space, but it does not always maximally viola
the Bell-CHSH inequality as shown in Fig. 2~a!. This shows
that the pseudospin formalism is not a ‘‘perfect’’ analogy
a two-qubit system when a qubit is composed of two
thogonal even and odd macroscopic quantum interfere
states. The pseudospin operatora•s ~with w50) in Eq. ~3!
can be written asa•s5U(u)sz , where a unitary rotation
U(u) is

U~u!u2n11&5cosuu2n11&1sinuu2n&, ~22!

U~u!u2n&52sinuu2n11&1cosuu2n&. ~23!

The even~odd! macroscopic quantum interference state do
not flip into the odd~even! macroscopic quantum interfer
ence state byU(u); it is only the parity of the given state
which changes. The fidelity between the ‘‘rotated’’ odd ma
roscopic quantum interference state and the even ma
scopic quantum interference state is obtained as

u^duU~p/2!ue&u25K~g!, ~24!

which is smaller than 1. It is clear thatue& and ud& are well
flipped to each other only for the limiting cases ofg→0 and
g→`. In other word, the rotation may get the given sta
out of the 232 space spanned byue& and ud&. Note, for
example, thatU(p/2)ue& cannot be represented by a line
superposition ofue& and ud&.

IV. THE CLAUSER-HORNE INEQUALITY

We have studied quantum nonlocality of continuou
variable states using the Bell-CHSH inequality@3# and all the
arguments have been based upon the parity measurem
The Clauser and Horne’s version of Bell’s inequality@4# can
also be considered to test the nonlocality of continuo
variable states with photon number measurement@6#. We
will investigate the Bell-CH inequality in this section.

A. The bound values for Bell-CH inequality

The bound values for the Bell-CHSH inequality62A2
are well known as Cirel’son bound@12#. The upper bound
(211A2)/2 of the Bell-CH inequality was proved by com
paring the CH and CHSH inequalities@21#. The bound val-
ues for the Bell-CH inequality can also be simply found
follows. The Bell-CH operator for a two-qubit system is d
fined as@4,6#

nt
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e
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QUANTUM NONLOCALITY TEST FOR CONTINUOUS- . . . PHYSICAL REVIEW A 67, 012106 ~2003!
BCH5j1~u1! ^ j2~u2!1j1~u1! ^ j2~u28!1j1~u18! ^ j2~u2!

2j1~u18! ^ j2~u28!2j1~u1! ^ 12211^ j2~u2!, ~25!

where

j~u!5uu&^uu, ~26!

uu&5cosuu0&1sinuu1&, ~27!

then the local theory imposes the inequality21<^BCH&
<0. Note here that we investigate a simple 232 system
without loss of generality. One can prove by direct calcu
tion

B CH
2 52BCH2D, ~28!

where

D5^u1uu18&~ uu1&^u18u2uu18&^u1u!1^ ^u2uu28&~ uu2&^u28u

2uu28&^u2u!2 . ~29!

Using ^B CH&2<^B CH
2 &, the average of Eq.~28! becomes

^B CH&21^BCH&1^D&<0, ~30!

and the Bell-CH functionBCH[^BCH& is

212A124^D&
2

<BCH<
211A124^D&

2
. ~31!

The maximal and minimal values of^D& can be obtained
from the eigenvalues ofD @20#, which are 6sin@2(u1

2u18)#sin@2(u22u28)#/4. The inequality 21/4<^D&<1/4 is
then obtained. Finally, the maximum and minimum of t
Bell-CH function are found at̂D&521/4 as

212A2

2
<BCH<

211A2

2
, ~32!

in which the upper and lower bounds of the Bell-CH fun
tion are given. For example, the Bell-CH function for
single-photon entangled state

uc&5
1

A2
~ u0&u1&2u1&u0&) ~33!

is calculated to be

BCH5
1

4
$cos@2~u182u28!2cos@2~u12u28!2cos@2~u182u2!

2cos@2~u12u2!#22%. ~34!

This maximizes to (A221)/2.0.21 at u150, u25
23p/8, u185p/4, andu28525p/8 @22# and minimizes to
2(A211)/2.21.21 at u150, u185p/4, and u252u28
5p/8.
01210
-

B. Bell-CH inequalities for continuous variables

BW used theQ function for the test of the Bell-CH in-
equality violation of the simple single-photon entangled st
~33! @6#. TheQ function for a two-mode stater12 is defined
as

Q12~a,b!5
2^bu 1^aur12ua&1ub&2

p2
, ~35!

whereua& andub& are coherent states. The Bell-CH functio
in terms ofQ representation is

BCH2BW5^z1~a! ^ z2~b!1z1~a! ^ z2~b8!1z1~a8!

^ z2~b!2z1~a8! ^ z2~b8!2z1~a! ^ 12211

^ z2~b!&

5p2@Q12~a,b!1Q12~a,b8!1Q12~a8,b!

2Q12~a8,b8!#2p@Q1~a!1Q2~b!#, ~36!

where Q1(a) and Q2(b) are the marginalQ functions of
modes 1 and 2, andz(a)5D(a)u0&^0uD†(a). Equation
~36! is a generalized version of the BW’s formalism as B
considereda5b50 @6#. In this case the measurement r
sults are distinguished according to the presence of phot
in other words, the dichotomic outcomes are no photon
the presence of photons. This is more realistic because
parity of photon numbers is difficult to measure with cu
rently developed photodetectors.

The Q function for the two-mode squeezed state is@15#

QTMSS~a,b!5
1

p2cosh2r
exp@2uau22ubu2

1tanhr ~ab1a* b* !#, ~37!

and theQ function for the entangled coherent state

QECS~a,b!5N 2$exp@2ua2gu22ub1gu2#1exp@2ua

1gu22ub2gu2#2exp@2~a2g!~a* 1g!

2~b1g!~b* 2g!24g2#2exp@2~a* 2g!

3~a1g!2~b* 1g!~b2g!24g2#%. ~38!

The marginalQ function of each state can also be simp
obtained from Eqs.~37! and ~38!. One can investigate the
violation of the Bell-CH inequality for the two differen
states from Eqs.~36!, ~37!, and~38!. The results are plotted
in Figs. 3~a! and 3~b!.

For the two-mode squeezed state, the degree of the v
tion of the Bell-CH inequality increases as generalizing
BW formalism. However, it increases up to a peak and
creases as increasing the squeezingr, which is shown in Fig.
3~a!. The two-mode squeezed state is a separable pure
when r is zero, where no violation of Bell’s inequality i
found. Asr increases, entanglement becomes to exist, wh
causes the violation of Bell’s inequality. However, asr in-
creases, the average photon number increases and the w
6-5
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of u0&u0& decreases as seen in Eq.~5!. As the BW formalism
of the Bell-CH violation is based on the nonlocality of n
photon and presence of photons, its violation diminish
when r is large.

The even and odd cat states become the no-photon
single-photon number states respectively, i.e.,ue&→u0& and
ud&→u1&, when g→0. Therefore, the entangled cohere
state approaches to the single-photon entangled state~33! in
this limit. It can be simply shown that the degree of t
Bell-CH violation in the generalized BW formalism for th
entangled coherent state forg→0 (BCH2BW.21.17) is the
same as that for single-photon entangled state~33!. It is
larger than the maximized value found by BW (BCH2BW.
21.11) @6# which is also shown in Fig. 3~b!. However, it
does not still reach the maximal violation2(11A2)/2.
21.21, in which the single-photon entangled state~33!
shows with perfect rotations. It does not maximally viola
the Bell-CH inequality because of the imperfect rotations
the displacement operator used in the BW formalism~36!.
Note that the displacement operator does not flipu0& to u1&
and vice versa@see Fig. 1~b!#. As g becomes large, one ca
observe qualitatively the same phenomenon as for the t
mode squeezed state. The Bell violation approaches zer
g→` because of the decrease of the weight of the te
u0&u0&.

Instead of the measurement of the presence of phot
the parity measurement can be used with the unitary rota
U(u) to investigate the Bell-CH inequality. The Bell-CH
function is defined as

FIG. 3. ~a! The maximized Bell-CH functionBCH(max) for a
two-mode squeezed state is plotted against the degree of sque
r using the BW~solid line! and the generalized BW~dashed! for-
malisms. The maximized functionBCH(max) of the same state base
upon parity measurement for the same state is given~dotted line!.
~b! The minimized Bell-CH functionBCH(min) for an entangled co-
herent state is plotted against its coherent amplitudeg using the
BW ~solid line! and the generalized BW~dashed! formalisms. The
minimized functionBCH(min) based upon the parity measurement
plotted for the same state~dotted line!.
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n

BCH
(P)5^x1~u1! ^ x2~u2!1x1~u1! ^ x2~u28!1x1~u18!

^ x2~u2!2x1~u18! ^ x2~u28!2x1~u1! ^ 12211

^ x2~u2!&, ~39!

x~u!5 (
n50

`

U~u!u2n&^2nuU†~u!. ~40!

For the two-mode squeezed state,

^x1~u1! ^ x2~u2!&5sinu1cosu1sinu2cosu2tanh 2r ,
~41!

^x1~u1! ^ 1&5
~cos2u1cosh2r 1sin2u1

2sinh2r !

cosh2r
, ~42!

and for the entangled coherent state,

^x1~u1! ^ x2~u2!&5
1

2
~sin2u1cos2u21sin2u1cos2u2!

2K~g!sinu1cosu1sinu2cosu2 ,

~43!

^x1~u1! ^ 1&5
1

2
~cos2u11sin2u1!, ~44!

from which the Bell-CH functionBCH
(P) can be obtained. In

both cases, we find that the Bell-CH function approaches
maximal violationBCH

(P)→2(16A2)/2. For the two-mode
squeezed state,BCH

(P) reaches the maximal violation forr
→` as shown in Fig. 3~a!. The upper bound is found atu1

50, u2523p/8, u185p/4, andu28525p/8, and the lower
bound atu150, u252u285p/8, andu185p/4. As shown in
Fig. 3~b!, for the entangled coherent state,BCH

(P) reaches the
maximal violation forg→0 andg→` at the same angles.

V. REMARKS

We have studied the violation of Bell’s inequalities usin
various formalisms. We have been able to discuss the
between the discussions for the quantum nonlocality
finite- and infinite-dimensional systems. The pseudospin
erator @8# can be understood as the limiting case of Gis
Peres observable@5#. The BW formalism@6# can be general-
ized to obtain a larger Bell violation@10#. However, the
original EPR state cannot maximally violate Bell’s inequal
even in the generalized version of the BW formalism. W
discussed the reason compared with the case of the entan
coherent state which shows the maximal violation of Be
inequality in the generalized BW formalism. Our result is
agreement with the recent study of nonlocality of a tw
mode squeezed state in absorbing optical fibers@23#. In Ref.
@23#, the authors found that nonlocality of the two-mod
squeezed state is more robust against a dissipative env
ment in pseudospin approach than in the previous study@24#
based on the BW formalism. It was shown that the dicho

ing
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mic measurement for the presence of photons is not so
fective in finding the nonlocality of two-mode squeez
states and entangled coherent states.

However, it must be pointed out that the nonlocality bas
on the Wigner andQ functions is extremely useful becaus
we know the measurement ofW andQ functions is experi-
mentally possible while the implementation of other ope
tions which we have discussed here have difficulties in th
experimental realization.

Note added in proof.Recently, we have found tha
Banazeket al. studied the Bell-CH inequality for a single
photon entangled state and a two-mode squeezed sta
terms ofQ representation@25#. They took imperfect detec
tion efficiency into consideration. Lately, a paper genera
s

tt.

T.

01210
f-

d

-
ir

in

-

ing the work of Chenet al., where different qubit states ar
assigned to a continuous variable system, has also appe
@26#.
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