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Quantum nonlocality test for continuous-variable states with dichotomic observables
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There have been theoretical and experimental studies on quantum nonlocality for continuous variables,
based on dichotomic observables. In particular, we are interested in two cases of dichotomic observables for
the light field of continuous variables: One case is even and odd numbers of photons and the other case is no
photon and the presence of photons. We analyze various observables to give the maximum violation of Bell's
inequalities for continuous-variable states. We discuss an observable which gives the violation of Bell’s in-
equality for any entangled pure continuous-variable state. However, it does not have to be a maximally
entangled state to give the maximal violation of Bell's inequality. This is attributed to a generic problem of
testing the quantum nonlocality of an infinite-dimensional state using a dichotomic observable.
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[. INTRODUCTION Bell violation for certain limit both for the generalized BW
and et al. formalism of for the Chen. We also investigate
The paradox suggested by Einstein, Podolsky, and Rose@lauser and Horne’sCH) version of Bell's inequality. We
aroused controversy about nonlocality of quantum stdfps ~ find the upper and lower bounds for the Bell-CH inequality
Bell proposed a remarkable inequality imposed by a locaRnd test whether the values for continuous-variable states
hidden variable theorj2], which enables a quantitative test reach these bounds.
on quantum nonlocality. Numerous theoretical studies and
experimental demonstrations have been performed to under- Il. ORIGIN OF PSEUDOSPIN OPERATOR
stand nonlocal properties of quantum states. Various versions . .
of Bell's inequality[3,4] followed the original ong2]. Chen etal, mtroducgd a pseudpspln opgratcs
Gisin and Peres found pairs of observables whose corre= (Sx:SyS2) for a nonlocality test of continuous variables as
lations violate Bell's inequality for a discreté-dimensional & direct analogy of a spin-1/2 syste9)],
entangled statgs]. Banaszek and Wikiewicz (BW) studied %
Be_II’s inequality for. co_ntinuous—variable states, in terms of s,= 2 (|2n+1)(2n+1|—|2n)(2n|), (1)
Wigner representation in phase space based upon parity mea- n=0
surement and displacement operatjéh This is useful be-

cause of its experimental relevance, but does not lead to Sx*rsy=2s., 2
maximal violation for the original Einstein-Podolsky-Rosen _ _
(EPR state[7]. Recently, Chert al. studied Bell's inequal- a-s=s,cosf+sind(e'¢s_+e '¥s,), 3

ity of continuous-variable statg8] using their newly de-
fined Bell operatof8,9]. In contrast to the operators in BW wheres_=37_,|2n)(2n+1|=(s,)" anda s a unit vector.
formalism, the pseudospin operators are not experimentallfhe Bell-CHSH operator based upon the pseudospin opera-
easy to realize, but the EPR state can maximally violateor is then defined ag3,8]
Bell's inequality in their framework8].

In this paper, we relate the “pseudospin” Bell operator of B=(a-s;)®(b-s;)+(a-5)®(b"-s)+(a'-5)®(b-s;)
Chenet al.to one of Gisin and Peres for a finite-dimensional , ,
state to bridge the gap between the discussions for the non- —@ s)e(b’s), )
locality of finite- and infinite-dimensionalor continuous- . where 1 and 2 denote two different modes andb, andb’
var!able systems. The origin of th.e.pseudospln operator IS e unit vectors
\all\t/tenibnlcggtitgoatge\/gﬂqcl)ﬂrs]gvg?;gnosf g'ggE:JESH%?ﬁgrvgglgony Bell's inequality imposed by local hidden variable theory

, o ) ; - is then|(B)|<2. In this formalism, the violation of the in-

and Holt's (CHSH'’S inequality for continuous-variable LT .
states. It is pointed out that the BW formalism can be gen-equ""l'ty is limited by Cirel'son boundB)lsZ\/E [8.12. It
eralized to obtain a larger Bell violatidriQ], but it cannot was found that a two-mode squeezed state
give the maximal violation for the EPR state even in the o n
generalized version. We analyze the reason why the EPR ITMSS) = > (tanhr) Iny|ny, (5)
state cannot maximally violate Bell's inequality in the gen- n coshr
eralized BW formalism. We compare the EPR state with an
entangled state of two coherent stdtes]. In contrast to the where|n) is a number state ands the squeezing parameter,
EPR state, the entangled coherent state shows the maximalximally violates Bell's inequality, i.e.[(B)|max—2v2
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when r becomes infinity[8]. Note that the two-mode \whereD(a) is the displacement operat@(«)=exgaa’
squeezed stat¢h) becomes the original EPR state when  _ x2) tor posonic operatora anda!. It should be pointed

out that in order to maximize the violation of Bell’s inequal-
qu, the BW formalism needs to be generalized to write the

lations violate Bell's inequality for arN-dimensional en- Bell operator ag10]

tangled stat¢5]

Bew=111(a)Il5(B)+11;(a")I1x(B) + 1 (a)Il(B")

N—-1
|\If>: 2 Cn|¢n>|¢n>a (6)
=0 —ITy(a)I5(B'). (10

where{|¢,)} and{|#,)} are any orthonormal bases. Further

they'showed that the viglatjon of Bell's inquality is maxi- g\w assumed two of the four parameters equal to zera as
mal in the case of a spip-singlet state for ap even. The  _ 53— The Bell-CHSH inequality can then be represented
Gisin-Peres observable is by the Wigner function as

A(0)=Tysin6+1 ,cosf+¢, (7)
2
T
whereT", andT’, are block-diagonal matrices in which each [(Bew)|= - [W(a,)+W(a,") +W(a',8)~W(a',8")]
block is an ordinary Pauli matrixr, ando,, respectively&
is a matrix whose only nonvanishing element&g_ ;-1 <2, (17
=1 whenN is odd and€ is zero whenN is even. The Bell
operator is then defined as
where W(«,8) represents the Wigner function of a given
Bep=(a-A)®(b-Ay))+(a-A)e(b’-Ay)+(a’ -Ay) state. Usindll(a)I1(a)=11,(a)Il,(a)=1, it is straight-
) , forward to check the Cirel'son bourldBgy)|<22 in the
B(b-Ay)— (@A) (b’ Ay), (8) generalized BW formalism.

. The Wigner function of the two-mode squeezed state is
whereA represents the Gisin-Peres observai(®). It was [15]

Gisin [14] who showed any entangled pure state violates a

Bell's inequality. Later, Gisin and Pergs] found the observ-

able (7) to give the violation of Bell's inequality for any 4

N-dimensional entangled pure state. Wrysd a,8) = —ex — 2 cosh 2 (|a|2+|B8|?)
In limit N—oo, we find thatl', andI', become pseu- 2

dospin operators, ands, in Eq. (2), and A(#) becomes

a-s (with ¢=0) in Eq.(3). Note that the effect of vanishes

for N— . Understanding the observables of Cle¢ral. as a

e o X o, Sraiomaerd 10 Show ot Qi WhCh he el unciorEy = () can be calcuated
EPR stateymaxi’mall violates Igell’s inequality as the EPFfln the infinite squeezing limit, the absolute Bell function
Y auaty maximizes as|Bgwlmax—8R~/3°=2.32 at a=—a'=p"/2

state=;_,|n)|n) is theinfinite-dimensional singlet stat&x- /(In3)/16 cosh 2 - .
tending the Gisin and Peres’ argument, we can make a re-, (In3)/16 cosh 2 and §=0. This shows that the EPR

mark: Any bipartite pure infinite-dimensional entangled stateztrztlszggesvr\}oftor::ﬁg:irzr?]"ylX'ﬂ?te(gelbzi:]e?ﬁgl'%:]neigﬁzge%n'
violates Bell's inequality for observables based on the pseu: ) - N Fg. &), g theg
dosDi BW formalism, the maximized valuBgy|max is plotted for
ospin observables. . .
the two-mode squeezed state and compared with the viola-
tion of Bell's inequality based on other formalism&@he
ll. THE BELL-CHSH INEQUALITIES FOR CONTINUOUS method of steepest desc¢m6] is used in Fig. a) and other
VARIABLES figures in the paper to get the maximized value of violation
within the formalism)
L ) . ) The reason why the generalized BW formalism does not
Banaszek and Wikiewicz studied Bell's inequality for  give the maximum violation for the EPR state can be ex-

continuous-variable systems based upon parity measuremehhined as follows. The operatsy in Eq. (1) is equivalent to

+2 sinh & (aB+a* B*)], (12

A. The two-mode squeezed state

and displacement operati¢f]: BW's observablell(a) when a=0 except a trivial sign
T e change. The main difference is that BW use the displacement
() =" () =T (a) operator while Cheret al. use the direct analogy of the ro-
* tation of spin operators. When the Gisin-Peres observable
=D(a), (|2n}{2n|—|2n+1)2n+1))D'(a), A(6) (or equivalently pseudospin observaldes with ¢
n=0

=0) is applied on an arbitrary stafe,_,f(n)|n), where
9 f(n) is an arbitrary function, we obtain
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2.8 check that the parity of the number states cannot be perfectly

(a) flipped by changing the parameter of the displacement

operatorD(«) as shown in Fig. (b).
1Bl
PP L B. The entangled coherent state

‘,{»" The entangled coherent stdfel] is an another important

2.00 - : 5 continuous-variable entangled state. Many possible applica-
r

tions to quantum information processing have been studied
utilizing entangled coherent statgds3]. The entangled coher-

(b) ent statd ECS can be defined as
P
[ECO=MI|=n=[=n"). (15)
0 o
Z’Zé v 16
—e Ml 2
=e ny,
; |7> = \/m| > (16)
-1
3 4 5 where N is a normalization factor andy) is a coherent state

lal .
with y#0. For the case of the entangled coherent state, the

FIG. 1. (a) The maximized value of an absolute Bell function Bell function in the generalized BW formalisfdil) can be
|B|max for a two-mode squeezed state vs the squeezing parametercalculated from its Wigner function
in the BW (solid line), the generalized BWdasheg, and the for-
malisms of Cheret al. (dotted. It is shown that the EPR state does Wgcd @, 8) =4N?{exd — 2|a— y|?—2| B+ y|?]
not maximally violate Bell's inequality in the generalized BW for- N B
malism. (b) The expectation valuB of BW’s observable for num- +exfd —2|a+y[*=2[f— /"]
ber states ofn=1 (solid), n=2 (dashegl and n=3 (dotted is _ _ _ * _
plotted against the absolute displacement paranjeter exg —2(a—y)(a*+y)=2(B+7y)

) ) X(B*—y)—4y*]—exd —2(a* —y)(aty)
A(G)nzo f(n)|n>=\/§co$6—w/4)n§0 f(2n)|2n) —2(B*+y)(B—v)—4¥1}, 17

wherey is assumed to be real for simplicity. We find that the
Bell function approaches to\2 for y— [10] at =0,
B=5m/16y, o' = w8y, andB'=37/16y as shown in Fig.
2(a).

(13 The entangled coherent state can be represented in the
(2% 2)-Hilbert space as

+2sin 6— 7/4) 20 f(2n+1)[2n+1).

The operatoA(6) rotates> f(n)|n) into even and odd parity

states; the pseudospin observatliecan completely flip the 1

parity of any given state by changing the angle. Note that the |[ECS=—(le)|d)—|d)|e)), (18

only measurement applied to the nonlocality test here is the V2

parity measurement. Different from the pseudospin operator,

BW’s observabldI(«) does not assure the complete parity Where|e)=N.(|y)+[=7)) and|[d)=N_(|y)=|- 7)) are

change, which makes it impossible to find the maximal Bell€ven and odd macroscopic quantum interference states with

violation of the two-mode squeezed state. In the two-moddlormalization factorsV, and NV_. Note that these states

squeezed state, orthogonal number states, which have wefprm an orthogonal basis, regardless of the valug,afthich

defined parity, are the entangled elements. The expectaticiPan the two-dimensional Hilbert space. Suppose that an

value of BW's observable for a number state is obtained a¥leal rotationR,(¢) around thex axis,

[17] .
R.(0)|e)=cosd|e)+i sind|d),

P(n,[a])=(n[II(a)[n)

, ) R.(60)|d)=i sing|e)+ cos|d) (19
e |7 o™ (2K 2 2n ,
= o 4k[L2k (lal?)] can be performed on both sides of the entangled coherent
’ k=0 | |of state(18). Because, stat€l8) is the same as the EPR-Bohm
okt 1)1 state of a two-qubit system, it can be easily proved that it
_(k+ i L= 2D (|a|2) ]2, (14 ~ maximally violates the Bell's inequality, i.e., the maximized
|a|#F2 Bell function is 2y2. Remarkably, it is known that the dis-

placement operator acts like the rotatiBp(#) on the even
WhereLg”)(x) is an associated Laguerre polynomial. We nu-and odd macroscopic quantum interference states for
merically asses®(n,|a|) for some different numbers and y>1 [10,19. The fidelity can be checked that
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cases,y—0 andy—o. Wheny is small, the entangled co-
herent state is not maximally entangled in an infinite-
dimensional Hilbert space as tracing the state over one mode
variables the von Neumann entropy is not infinite. It is inter-
esting to note that the nonmaximally entangled state maxi-
mally violates the Bell's inequality. We attribute this mis-
match to the dichotomic nature of the test of quantum
nonlocality for an infinite-dimensional system. However, the
entangled coherent state is maximally entangled in the
2Xx 2-Hilbert space, but it does not always maximally violate
the Bell-CHSH inequality as shown in Fig(e2. This shows
that the pseudospin formalism is not a “perfect” analogy of
a two-qubit system when a qubit is composed of two or-
thogonal even and odd macroscopic quantum interference
states. The pseudospin operatos (with ¢=0) in Eq. (3)

can be written as;a-s=U(#)s,, where a unitary rotation

0 0.2 o 0.4 0.6 u(e) is

FIG. 2. (8) The maximized value of an absolute Bell function U(6)|2n+1)=cosh|2n+1)+sin6|2n), (22
|B|max for an entangled coherent state is plotted against its coherent
amplitude y using the BW(solid), the generalized BWdasheg,
and formalisms of Cheat al. (dotted. The entangled coherent state
maximally violates Bell's inequality in the generalized BW formal-
ism for y—<o and in the formalism of Cheat al; both fory—0  The even(odd macroscopic quantum interference state does
(but y#0) and for y—o. (b) The expectation valu® of BW's  not flip into the odd(even macroscopic quantum interfer-
observable for the even macroscopic quantum interference state éhce state byJ(6); it is only the parity of the given state
plotted againstr for y=2 (solid) andy=5 (dashed Fory>1, the  which changes. The fidelity between the “rotated” odd mac-
displacement operator acts like a rotation so that the parity of th‘?oscopic quantum interference state and the even macro-
even and odd macroscopic quantum interference states may be W%U:opic guantum interference state is obtained as
flipped.

U(6)|2n)=—sin6|2n+1)+cos6|2n). (23

(elD™(ia)R(6)|€)[2=|(d[D (i) Ry(O)|d)>—1 for y (dlU(m2]e)*=K (), @49
—oo, wheref=2vya; andg; is real. As a result, the parity of
the even and odd macroscopic quantum interference stateshich is smaller than 1. It is clear thig) and|d) are well
which are the orthogonal entangled elements in the entangleftipped to each other only for the limiting casesyf>0 and
coherent state, can be perfectly flipped by the displacement—c«. In other word, the rotation may get the given states
operator fory— o as is implied in Fig. &) [10]. This prop-  out of the 2<2 space spanned Hg) and |d). Note, for
erty enables the maximal Bell violation of the entangled co-example, thatJ(n/2)|e) cannot be represented by a linear
herent state for a large coherent amplitude. superposition ofe) and|d).

In the pseudospin formalism, the correlation function
E(01,¢1,02,02) =(ECYs1(01,91) ®S,(62,9,)[ECS  of

the entangled coherent state is IV. THE CLAUSER-HORNE INEQUALITY

We have studied quantum nonlocality of continuous-
variable states using the Bell-CHSH inequali®y and all the
X COg @1 — ¢5)Sin6;Sinb,, arguments have been based upon the parity measurement.
The Clauser and Horne’s version of Bell's inequalif can
coshy?sinhy? also be considered to test the nonlocality of continuous-
K(y)= >, (200  variable states with photon number measurenjéht We

i yinrt will investigate the Bell-CH inequality in this section.

n=0 (2n)!(2n+1)!

where 0<K(y)<1, andK(y) approaches 1 whery—0 _ _
(but y#0) and y—o. The maximized value of the Bell  The bound values for the Bell-CHSH inequality22

E(61,¢1,60,,¢95)=—C0s6,C0S0,—K(y)

A. The bound values for Bell-CH inequality

function B=(B) is obtained from Eq(20) as are well known as Cirel'son bound2]. The upper bound
(— 1+ /2)/2 of the Bell-CH inequality was proved by com-
|B|mas=2V1+K(7y)?, (21)  paring the CH and CHSH inequaliti¢&1]. The bound val-

ues for the Bell-CH inequality can also be simply found as
by setting 6,=0, 6;=m/2, 6,=—0,, and ¢;=¢,=0. follows. The Bell-CH operator for a two-qubit system is de-
Then, the maximal violation is found for the two extreme fined as[4,6]
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Bop=£1(01)@&x(0,) + £1(01) @ Ex(03) + £1(67) @ E5(6;)

—£1(01)®&2(03) — £1(01) @1, =11 ®&,5(0,), (25

where
E(0)=16)(8|, (26)
|§) = cosh|0)+sing|1), (27)

then the local theory imposes the inequalityl<(Bcy)
=<0. Note here that we investigate a simpl&2 system

without loss of generality. One can prove by direct calcula-

tion
Bi,=—Bcy—A, (28)
where
A=(0]01)(|01)(01] = [01)01])1®(62] 02)(|02)( 03|
=162)(02)>.

Using (Bcp)?<(B2,), the average of Eq28) becomes

(29

(Bew)?+(Ben)+(A)=0, (30
and the Bell-CH functioBcy=(Bcy) is
—1-V1-4(4) —1+V1-4(4)
> <Bcps — (31

The maximal and minimal values dfA) can be obtained
from the eigenvalues ofA [20], which are *sin2(6;
—0)]1sinN2(6,— 6;)1/4. The inequality —1/4<(A)<1/4 is

then obtained. Finally, the maximum and minimum of the

Bell-CH function are found atA)=—1/4 as

—1-2 —1+.2
—  SBews——— (32

in which the upper and lower bounds of the Bell-CH func-
tion are given. For example, the Bell-CH function for a
single-photon entangled state

1

)= \/§(|0>|1>—|1>|0>) (33

is calculated to be

1
Bow=7(c0§ 2(6;— 05) —cog 2(61 — 63) —cog 2(6; — 0,)

—cog2(6,—0,)]—2}.

This maximizes to (2—1)/2=0.21 at 6,=0, 6,=
—37/8, 61=ml4, and#;=—5m/8 [22] and minimizes to
—(J2+1)/2=—1.21 at 6,=0, 0;==/4, and O,=— 6}
=/8.

(39

PHYSICAL REVIEW A 67, 012106 (2003

B. Bell-CH inequalities for continuous variables

BW used theQ function for the test of the Bell-CH in-
equality violation of the simple single-photon entangled state
(33) [6]. The Q function for a two-mode state,, is defined
as

A Bl1{alpiza)i|B)2

Q. B)= > (39
™

where|a) and|8) are coherent states. The Bell-CH function
in terms of Q representation is

Ben-sw=({1(@)® {2(B) + {1(a) @ {o(B') + {a(a’)
®L(B)—L1(a")®LH(B) —{i(a)®]p— 1y
®{a(B))

=7 Qi @,B)+ Qi ,B') +Qia’, B)
—QuAa’,B")]=7[Qi(a) +Q2B)],

where Qq(«) and Q,(B) are the marginal) functions of
modes 1 and 2, and(«)=D(a)|0){(0|D"(«). Equation
(36) is a generalized version of the BW'’s formalism as BW
considereda= =0 [6]. In this case the measurement re-
sults are distinguished according to the presence of photons,
in other words, the dichotomic outcomes are no photon and
the presence of photons. This is more realistic because the
parity of photon numbers is difficult to measure with cur-
rently developed photodetectors.

The Q function for the two-mode squeezed stat¢1is]

(36)

1 2 2
Qrusd @,B)=————exfd —[a|*—|B]
m?coshr
+tanhr (aB+ a* B*)], (37

and theQ function for the entangled coherent state
Qecd @.B)=N*exd —|a—y|*~|B+ ¥’ ]+exd — |
+y2 =B’ 1-exd —(a—y)(a* +7)
—(B+y)(B*—y)—4y*]—exd —(a* —v)
X(a+y)=(B*+(B=7—4¥]}. (39

The marginalQ function of each state can also be simply
obtained from Eqs(37) and (38). One can investigate the

violation of the Bell-CH inequality for the two different

states from Eqs(36), (37), and(38). The results are plotted

in Figs. 3a) and 3b).

For the two-mode squeezed state, the degree of the viola-
tion of the Bell-CH inequality increases as generalizing the
BW formalism. However, it increases up to a peak and de-
creases as increasing the squeezinghich is shown in Fig.

3(a). The two-mode squeezed state is a separable pure state
whenr is zero, where no violation of Bell's inequality is
found. Asr increases, entanglement becomes to exist, which
causes the violation of Bell's inequality. However, -
creases, the average photon number increases and the weight
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BUH=(x1(61)® x2(02) + x1(01) ® x2( 65) + x1(67)
021 e
B (@) ® X2(02) = x1(01) @ x2(03) = x1(01) @1~ 1y
CH(max)
0.1} A7 ® x2(62)), (39
J’s' ‘s‘\ e
— - t
L x(6)= 2, U(§)]2n)(2n|U"(6). (40
-0. / ) For the two-mode squeezed state,
-1 7 (x1(61)® x2(65))=sin 6,cosé,sin H,cosb,tanh 2,
BCH(mm) N (41)
—Lj S
ed 1] (cog 6,cosHr + si?#2sintPr) 4
B s LT <X1( 01)@ >— coshZ y ( )
0 1 2 3 4 5

and for the entangled coherent state,
FIG. 3. (@ The maximized Bell-CH functiorBcymay for a

two-mode squeezed state is plotted against the degree of squeezing _ l . .

r using the BW(solid line) and the generalized BWHashed for- (X1(01)® x2(60,)) = 2(sm201005202+5|n201003202)
malisms. The maximized functidBcmay Of the same state based ) _

upon parity measurement for the same state is gidetted ling. —K(y)sind,cosé;sin #,c0s6,,

(b) The minimized Bell-CH functiorBcymin) for an entangled co-
herent state is plotted against its coherent amplitydasing the
BW (solid line) and the generalized BWdashed formalisms. The

minimized functionB¢(miny based upon the parity measurement is (x1(6)@1)= l(cos’-eﬁ sin201), (44)
plotted for the same stateotted ling. 2

(43

from which the Bell-CH functiorB{}) can be obtained. In

OI |t?]>|oé (fgsas_els ?s sgenbin Eg)' Astrt]he BWI forrlrlltalis][n both cases, we find that the Bell- CH function approaches the
of the bell- violation IS based on the nonlocality ol N0 .41 violation B( H—— (1= \J2)/2. For the two-mode

\F/)vr;f:r?p i:llw:rgp;resence of photons, its violation diminisheg,, oe;eq stateB(H) reaches the maximal violation far

The even and odd cat states become the no-photon arﬁ as shown in Fig. @). The upper bound is found &
. . . 0, 6,=—3w/8, ;= =l4, andd,= —5=/8, and the lower
single-photon number states respectively, ie);—|0) and
bound atd,=0, 0,=— 6,=7/8, andf; = m/4. As shown in
|d)—|1), when y—0. Therefore, the entangled coherent 9. 3(b), for th tanaled coh {st Eé:n) hes th
state approaches to the single-photon entangled &axen )I orl te ep ange(z) C% erer; sta}[h reac esl N
this limit. It can be simply shown that the degree of themaxma violation fory—1 andy—¢ at In€ same angles.
Bell-CH violation in the generalized BW formalism for the
entangled coherent state fgr-0 (Bop_gw=—1.17) is the V. REMARKS

same as that for single-photon entangled st8®. It is We have studied the violation of Bell's inequalities using

larger than the maximized value found by BBd.-sw=  various formalisms. We have been able to discuss the link
—1.11) [6] which is also shown in Fig. (). However, it  petween the discussions for the quantum nonlocality of
does not still reach the maximal violation (1+2)/2= finite- and infinite-dimensional systems. The pseudospin op-

—1.21, in which the single-photon entangled st#83)  erator[8] can be understood as the limiting case of Gisin-
shows with perfect rotations. It does not maximally violate Peres observabl&]. The BW formalism{6] can be general-
the Bell-CH inequality because of the imperfect rotations byized to obtain a larger Bell violatiofl0]. However, the
the displacement operator used in the BW formali@6).  original EPR state cannot maximally violate Bell’s inequality
Note that the displacement operator does not|flipto |1) even in the generalized version of the BW formalism. We
and vice versgsee Fig. 1b)]. As y becomes large, one can discussed the reason compared with the case of the entangled
observe qualitatively the same phenomenon as for the twaeoherent state which shows the maximal violation of Bell's
mode squeezed state. The Bell violation approaches zero @&sequality in the generalized BW formalism. Our result is in
y— because of the decrease of the weight of the ternagreement with the recent study of nonlocality of a two-
|0)|0). mode squeezed state in absorbing optical fip28 In Ref.
Instead of the measurement of the presence of photong23], the authors found that nonlocality of the two-mode
the parity measurement can be used with the unitary rotatioaqueezed state is more robust against a dissipative environ-
U(#) to investigate the Bell-CH inequality. The Bell-CH ment in pseudospin approach than in the previous st2dly
function is defined as based on the BW formalism. It was shown that the dichoto-
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mic measurement for the presence of photons is not so efng the work of Cheret al,, where different qubit states are
fective in finding the nonlocality of two-mode squeezedassigned to a continuous variable system, has also appeared
states and entangled coherent states. [26].
However, it must be pointed out that the nonlocality based
on the Wigner and) functions is extremely useful because ACKNOWLEDGMENTS
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